Дирака уравнение - Definition. Was ist Дирака уравнение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Дирака уравнение - definition

Дирака уравнение

Уравнение Дирака         
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
ДИРАКА УРАВНЕНИЕ         
квантовое уравнение движения для частиц со спином 1/2 (напр., электронов и позитронов, мюонов), удовлетворяющее требованиям специальной относительности теории. Сформулировано П. Дираком в 1928.
Дирака уравнение         

квантовое уравнение движения электрона, удовлетворяющее требованиям относительности теории (См. Относительности теория); установлено П. Дираком в 1928. Из Д. у. следует, что электрон обладает собственным механическим моментом количества движения - Спином, равным ћ/2, а также собственным магнитным моментом, равным Магнетону Бора eћ/mc, которые ранее (1925) были открыты экспериментально (e и m - заряд и масса электрона, с - скорость света, ћ - Планка постоянная). С помощью Д. у. была получена более точная формула для уровней энергии атома водорода (и водородоподобных атомов), включающая тонкую структуру уровней (см. Атом), а также объяснён Зеемана эффект. На основе Д. у. были найдены формулы для вероятностей рассеяния фотонов свободными электронами (Комптона-эффекта (См. Комптона эффект)) и излучения электрона при его торможении (Тормозного излучения (См. Тормозное излучение)), получившие экспериментальное подтверждение. Однако последовательное релятивистское описание движения электрона даётся квантовой электродинамикой (См. Квантовая электродинамика).

Характерная особенность Д. у. - наличие среди его решений таких, которые соответствуют состояниям с отрицательными значениями энергии для свободного движения частицы (что соответствует отрицательной массе частицы). Это представляло трудность для теории, т.к. все механические законы для частицы в таких состояниях были бы неверными, переходы же в эти состояния в квантовой теории возможны. Действительный физический смысл переходов на уровни с отрицательной энергией выяснился в дальнейшем, когда была доказана возможность взаимопревращения частиц. Из Д. у. следовало, что должна существовать новая частица (античастица (См. Античастицы) по отношению к электрону) с массой электрона и электрическим зарядом противоположного знака; такая частица была действительно открыта в 1932 К. Андерсоном и названа Позитроном. Это явилось огромным успехом теории электрона Дирака. Переход электрона из состояния с отрицательной энергией в состояние с положительной энергией и обратный переход интерпретируются как процесс образования пары электрон-позитрон и аннигиляция такой пары (см. Аннигиляция и рождение пар).

Д. у. справедливо и для др. частиц со спином 1/2 (в единицах ћ) - мюонов (См. Мюоны), Нейтрино. Для протона и нейтрона, также обладающих спином 1/2, оно приводит к неправильным значениям магнитных моментов: магнитный момент "дираковского" протона должен быть равен ядерному магнетону eћ/2Мc (М - масса протона), а нейтрона (поскольку он не заряжен) - нулю. Опыт же даёт, что магнитный момент протона примерно в 2,8 раза больше ядерного магнетона, а магнитный момент нейтрона отрицателен и по абсолютной величине составляет около 2/3 от магнитного момента протона. Аномальные магнитные моменты этих частиц обусловлены их сильными взаимодействиями (См. Сильные взаимодействия).

Лит: Бройль Л. де, Магнитный электрон, пер. с франц., Хар., 1936.

Wikipedia

Уравнение Дирака

Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.

Уравнение Дирака вместе с уравнениями Максвелла позволяет объяснить взаимодействие свободных электронов с электромагнитным полем, рассеяние света на электроне (эффект Комптона), рождение фотоном электронно-позитронной пары и т. д. Оно значительно обобщает классические уравнения Ньютона, релятивиcтские классические уравнения движения частиц и уравнение Шрёдингера.

За открытие этого уравнения П. Дирак получил Нобелевскую премию по физике 1933 года.

Was ist Уравнение Дирака - Definition